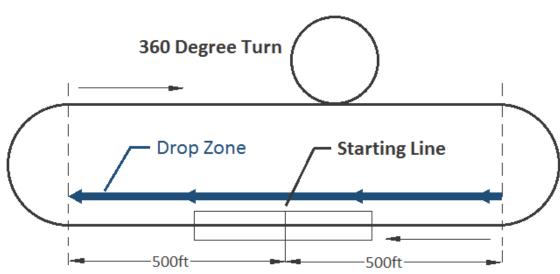


AIAA Design/Build/Fly

Faculty Advisor: Professor Robert H. Liebeck Advisors: Colin Sledge, Guiseppe Venneri, John Chen, Paul Parcel, Kamil Samaan



What is Design/Build/Fly?

AIAA Design/Build/Fly is an annual international remote-controlled airplane competition that allows team to apply their analytical skills and showcase their cooperative efforts in building real-world aircrafts. Students must design, manufacture, and demonstrate the flight capabilities of an aircraft that can perform in a series of different flight scenarios.

Goals and Objectives

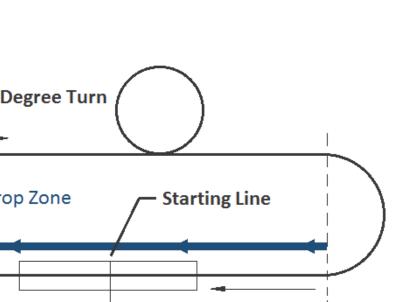
- Design aircraft based on given rules and constraints
- Develop and apply innovative, practical, and affordable fabrication techniques
- Document and compile design, manufacturing, and testing process into industry-standard written report

Flight Course

- Mold allows different iterations of layup

Competition Mission Objectives

Ground Mission Mission 1 Load mission 2 and 3 Maximum number of laps in 4 minutes (empty load) payloads in least time possible Mission 2 Mission 3 Fly 3 laps in least time Maximum number of laps while releasing one wiffle possible with mission 2


ball (~2.4 oz) each lap

Requirements and Constraints

- Battery weight less than 2lbs
- Nothing can come off in flight
- Number of Servos (Actuators)

payload (~5 lbs)

Molded Front Fairing

- Foam-core male plug made using CNC foam cutter and hand-shaping
- Composite female mold formed from male plug
- schedules and consistency in quality of parts
- Lightweight, aerodynamic, and structurally stiff

Payload Release Mechanism

- 3D printed clip system individually releases wiffle balls
- Actuated using elevator input
- Low profile and lightweight Order of balls released helps

maintain plane center of gravity

Balsa Wings

Adjustable wing jig and laser-cut balsa

Parts assembled using jig and bonded

Microlite skin provides torsional strength

parts ensure consistent production

Lightweight and able to withstand

using CA super glue

G-forces during flight

Tools, \$1,100 Molding, Composites, \$1,000 \$2,000 Electronics, \$300 Travel, \$2,500 Supplies, \$775 Aircraft

2014-2015 Costs and Expenditures

Total Budget: \$9775

Team Structure

Project Manager **Chief Engineer Charles Poblete** Michael Lau

Balsa Structures

Project Manager Jocelyn Pedroza

Landing Gear

Violet Ismailyan

Molding

Justin Kerr

An Do Karla Marron Propulsion/ CAD Telemetry Alex Kwok Enrique Gurrola

Test Flight

Enrique Gurrola

Kunal Deshpande

Motor Mount

Components,

\$600

Aerodynamics Charles Poblete Colin Sledge Paul Parcell

Molded Wing Laliphat Kositchaimongkol

Motor/Batteries,

\$1,500

Payload Release

Patricio Guerrero

Testing


Arlen Magtoto

Team Members

Alexandre Law Elena Vazquez Marvin Lin Allen He Ho Kyoung Lee Michael Luong Amoya Lewis Hugo Mendoza Quan Ngo Andres Ruiz Jacob Gantz Russell Okamura Anuj Patel Jamie Ibrahim Ryan Razo **Brian Pham** Jesus Zepeda Sabrina Ng Caroline Alvarado Cantu Jonathan Chen Saho King Daniel King Joseph Hsieh Saumil Shah Juan David Lopez Sonny Li David Nguyen **Edmund Situ** Willis Zhang Justin Williams Raveen Solanga Arachchige Kristanto Uisan Zulema Rodriguez

For more information, visit http://www.aiaadbf.org/

For further inquiry, contact: Charles Poblete

cpoblete@uci.edu jocelynp@uci.edu mrlau@uci.edu

3D printed mold for rapid prototyping and production with consistency

Motor Mount

- Lightweight, carbon motor mount
- Able to withstand vibrations and forces from propeller